3.152 \(\int \frac{(d+e x^2)^2}{\sqrt{a+c x^4}} \, dx\)

Optimal. Leaf size=264 \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (6 \sqrt{a} \sqrt{c} d e-a e^2+3 c d^2\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt{a+c x^4}}-\frac{2 \sqrt [4]{a} d e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{2 d e x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{e^2 x \sqrt{a+c x^4}}{3 c} \]

[Out]

(e^2*x*Sqrt[a + c*x^4])/(3*c) + (2*d*e*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(1/4)*d*e*(
Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/
2])/(c^(3/4)*Sqrt[a + c*x^4]) + ((3*c*d^2 + 6*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c
*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(6*a^(1/4)*c^(5/4)*Sqrt[a + c*
x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.129349, antiderivative size = 264, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {1207, 1198, 220, 1196} \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (6 \sqrt{a} \sqrt{c} d e-a e^2+3 c d^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt{a+c x^4}}-\frac{2 \sqrt [4]{a} d e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{2 d e x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{e^2 x \sqrt{a+c x^4}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2/Sqrt[a + c*x^4],x]

[Out]

(e^2*x*Sqrt[a + c*x^4])/(3*c) + (2*d*e*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(1/4)*d*e*(
Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/
2])/(c^(3/4)*Sqrt[a + c*x^4]) + ((3*c*d^2 + 6*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c
*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(6*a^(1/4)*c^(5/4)*Sqrt[a + c*
x^4])

Rule 1207

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(a + c*x^4)^(p +
 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (d+e x^2\right )^2}{\sqrt{a+c x^4}} \, dx &=\frac{e^2 x \sqrt{a+c x^4}}{3 c}+\frac{\int \frac{3 c d^2-a e^2+6 c d e x^2}{\sqrt{a+c x^4}} \, dx}{3 c}\\ &=\frac{e^2 x \sqrt{a+c x^4}}{3 c}-\frac{\left (2 \sqrt{a} d e\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+c x^4}} \, dx}{\sqrt{c}}+\frac{\left (3 c d^2+6 \sqrt{a} \sqrt{c} d e-a e^2\right ) \int \frac{1}{\sqrt{a+c x^4}} \, dx}{3 c}\\ &=\frac{e^2 x \sqrt{a+c x^4}}{3 c}+\frac{2 d e x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{2 \sqrt [4]{a} d e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{\left (3 c d^2+6 \sqrt{a} \sqrt{c} d e-a e^2\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0952858, size = 120, normalized size = 0.45 \[ \frac{x \sqrt{\frac{c x^4}{a}+1} \left (3 c d^2-a e^2\right ) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^4}{a}\right )+e x \left (2 c d x^2 \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^4}{a}\right )+e \left (a+c x^4\right )\right )}{3 c \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^2/Sqrt[a + c*x^4],x]

[Out]

((3*c*d^2 - a*e^2)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + e*x*(e*(a + c*x^4) +
 2*c*d*x^2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(3*c*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.051, size = 266, normalized size = 1. \begin{align*}{e}^{2} \left ({\frac{x}{3\,c}\sqrt{c{x}^{4}+a}}-{\frac{a}{3\,c}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \right ) +{2\,ide\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}}+{{d}^{2}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2/(c*x^4+a)^(1/2),x)

[Out]

e^2*(1/3/c*x*(c*x^4+a)^(1/2)-1/3*a/c/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^
(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+2*I*d*e*a^(1/2)/(I/a^(1/2)*c^(1/2))
^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I
/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+d^2/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2
)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}^{2}}{\sqrt{c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^2/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}{\sqrt{c x^{4} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^2*x^4 + 2*d*e*x^2 + d^2)/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 2.72874, size = 124, normalized size = 0.47 \begin{align*} \frac{d^{2} x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} + \frac{d e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} + \frac{e^{2} x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2/(c*x**4+a)**(1/2),x)

[Out]

d**2*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + d*e*x**3*gamma(
3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(7/4)) + e**2*x**5*gamma(5/4)*hyper((
1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}^{2}}{\sqrt{c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2/sqrt(c*x^4 + a), x)